Energy Efficiency Assessments to Industrial Plants in Florida

Dr. C. Cardenas-Lailhacar

Dept. of Mechanical and Aerospace Engineering University of Florida

10th Annual Market Transformation Conference

September 13-15, 2022 Hilton West Palm Beach, West Palm Beach, FL

Mapping The Energy Landscape Of Water And Wastewater Treatment Plants In The State Of Florida

Florida Department of Agricultural and Consumer Services Office of Energy

Acknowledgements

Dr. S.A. Sherif

Professor and Director UF Industrial Assessment Center (UF-IAC) Department of Mechanical and Aerospace Engineering Herbert Wertheim College of Engineering, University of Florida

The UF-IAC Students

Greetings

Engineering UNIVERSITY OF FLORIDA

Outline

- Industrial Energy Audits
- Baseline and Metrics
- Energy Savings Opportunities
- The Implementation Rates and The Gaps
- The Wastewater Treatment Plants Case
- Emerging Energy Efficiency Technologies and ESCOs
- Conclusions

- IAC program was established in 1976 as the Energy Analysis and Diagnostic Center (EADC)
- In the 2021-2026 funding cycle, there are 31 Industrial Assessment Centers (IACs) in the US
 - The UF-IAC was established in 1991 and has been in existence ever since

UNIVERSITY OF FLORIDA

The UF-IAC performs free energy assessments to midsize manufacturing facilities in Florida Scope of work involves energy efficiency, productivity enhancement, and waste management.

Industrial Energy Audit

UNIVERSITY OF FLORIDA

IDEAS

R

0

G A

T

COMPETITIVENESS & INNOVATION

Energy Efficiency Benefits

INCREASES COMPETITIVENESS

INCREASES PRODUCTIVITY

REDUCES WASTE

IMPROVES ENVIRONMENTAL PERFORMANCE

LOW PRODUCTION COSTS

ENERGY EFFICIENCY

Why Not Implementing EE in Industry

- Low ROI
- Initial Cost too High
- Flow of \$ Doesn't Allow it
- High Operational Costs
- Impratical
- Processes/Equipment Changes
- Plant has Changed
- Personnel Changes
- Production Plan Changes
 - Unknown

- Burocratic Restrictions
- Lack of Staff for Analysis and/or Implementation
- Not Worth it
- In disagreement
- Risk or Inconvenience for personnel
- Sospicious of Risk/Problem with Equipment or Producto
- Discarded, Imp. Failed
- Other

Bottom Line: Move Industry

FROM

"Motivated Confussion"

- Recognices the value of EE but
- Confussion on HOW to Proceed, and
- The Problem is TOO big and therefore:
- Results: Little or NO Action

TO

"Informed Actions"

- Apply Methods and Tools
- Identify subset of systems with Guaranteed Engineering
- Develop Management Policies (e.g., policies for everything: purchasing, replacements of equipment, supply chain, etc.) Policies For ALL

The Industrial Energy Audit Results

	Pesimist	Optimist	Cost	SPP	Type of Opportunities
I	0%	5%	Maint. Budget	0	Routine & Reactive Maintenance Operations
п	5%	15%	No Insvetment Cost	< 1 yr	Elimminate/reduce leaks: water, steam & air, change operations set-ups of equipment, high eff. motors, boilers condensate return, among others
ш	15%	30%	Low Investment Cost	1 to 5 years	Insulation, Power Factor reduction, recover heat from steam bleading, economizers in boilers, efficiency increase, evaporators, etc.
IV	30%	50%	Major Investment Cost	> 5 yrs	Boilers insulation, evaporators, biogas generation from biomass, cogeneration systemsfrom biomass, or to satisfy termal loads for heating or cooling, etc.

R

Enginæring

The WWTPs Case

UNIVERSITY OF FLORIDA

Energy Use in WWTPs

		Rated	Rated	Wastewater	Total Energy	Electricity	Natural Gas
Group	Plant	Capacity (MGD)	Capacity (MG/yr)	Treated (MG/yr)	(MMBtu/yr)	(kWh/yr)	(MMBtu/yr)
	А	52.5	19,162.5	8,860.8	302,986.9	35,968,031	180,264
Ι	В	43	15,695.0	14,391.0	152,100.4	42,058,447	8,597
	С	33	12,045.0	8,206.3	166,378.1	28,473,059	69,228
	D	26.5	9,672.5	6,524.7	122,336.9	18,074,400	60,667
п	Е	15	5,475.0	7,439.7	57,966.2	16,988,917	0
111	F	14.5	5,292.5	4,080.8	26,896.3	7,882,844	0
	G	13.7	5,000.5	3,142.0	25,187.8	7,077,600	1,039
	Н	10	3,650.0	3,472.6	42,037.2	12,320,400	0
ш	Ι	9	3,285.0	2,415.6	23,367.7	6,848,676	0
	J	7.5	2,737.5	2,659.5	33,748.6	9,891,135	0

G

A

Т

0

R

FLORIDA

Energy Baseline

Total Energy Use vs Actual Amount of WW Treated

Total Energy Baseline - Plant C

UNIVERSITY OF

Wastewater Treated (MG/yr)

Electric Energy Use Distribution

	Energy Baselines for All Ten Plants												
		m	b	R ²									
Group		(MMBtu/MG)	(MMBtu)	(%)									
	А	-1.4834	26,344	2.05									
Ι	В	0.4032	12,283	0.51									
	С	4.1152	12,100	1.98									
	D	5.8238	7,028.20	6.77									
П	Е	-0.2552	4,988.90	0.06									
	F	2.5126	1,386.90	13.98									
	G	1.2981	1,780.30	6.77									
	Н	-582.54	1.00E+06	5.47									
III	Ι	0.6619	1,814.10	0.62									
	J	2,759.70	212,644	49.89									

UNIVERSITY OF

Group		Energy Cost (from slope m) (\$/MG)	Non-Treatment Cost (from intercept b) (\$)
	А	13.71	243,566
Ι	В	6.65	202,394
	С	42.3	124,370
	D	102.98	124,294
II	Е	4.67	91,390
	F	46.55	25,679
	G	22.25	38,517
	Н	54.8	94,000
III	Ι	15.52	42,453
	J	173.9	13,397

15

R

0

G

A

Energy Savings Opportunities

ARs		GROUP I		GROUP II				GROUP III		
AKS	А	В	С	D	Е	F	G	Н	Ι	J
Replace blowers with air compressors	\checkmark	V				V				
Turn on the UV controller										
Install high-efficiency motors						V	V	V	V	V
Put oxygen sensor in boiler's exhaust										
Install a CHP system										
Install CHP or CNG syst. using biogas										
Install high-efficiency lighting			\checkmark				V			
Insulate tanks			\checkmark							
Enhance biogas generation			\checkmark							
Install occupancy sensors							\checkmark			
Replace V-belts with cogged V-belts			\checkmark			V	\checkmark			
Install an energy management System			V	V						V
Preheat the air to the dryer				\checkmark						
Install O ₂ sensor in boiler exhaust				V			V			
Install variable frequency drives					V				V	V
Install heat recovery for the boiler										
Install a photovoltaic system								\checkmark		
Install higher eff. blades in aerators								\checkmark		
Turn off the digester's pumps								\checkmark		
Install pipes for biomass transport								\checkmark		
Install timers for outside lights										
Treat rejected water with ozone									V	
Optimize comp. air vol. generation										V
Install a back-up generator switch										V
Energy Cost Savings (\$/yr)	480,698	274,070	331,342	222,530	128,672	256,917	50,986	146,122	95,000	120,627
% of Energy Costs Saved	17.16	8.16	16.22	11.82	12.10	51.73	10.00	10.75	17.34	19.43

R

G

Productivity Increase Opportunities

	GROUP I			GROUP II				GROUP III		
ARs	Α	В	С	D	E	F	G	Н		J
Install a reactor for nutrient										
recovery										
Automate the aeration process								\checkmark		
Productivity Cost Savings (\$/yr)	493,101	492,292		495,807				70,421		

Waste Management Opportunities

	GROUP I				UP II	GROUP III				
ARs	Α	В	С	D	E	F	G	Н	1	J
Install a Biodigester										
Cost Savings (\$/yr)										396,790

Total Cost Savings Opportunities

	GROUP I				GROU	P II	GROUP III			
ARs	Α	В	С	D	E	F	G	Н		J
TOTAL COST SAVINGS	973,799	766,362	331,342	718,337	128,672	256,917	50,986	216,543	95,000	517,417

Engineering

Cost and Energy Savings for the Three Groups of WWTPs

	Cost Savings	Implementation Cost	Simple Payback Period	Return on Investment	Electric Energy Savings	Thermal Energy Savings	CO ₂ Reduction
GROUP	(\$/yr)	(\$)	(yrs)	(%/yr)	(kWh/yr)	(MMBtu/yr)	(tons CO ₂ /yr)
I	2,199,991	6,973,813	3.17	31.55	20,454,658	146,290.0	1838.6
Π	6,938,084	639,958	0.09	1,084.15	2,574,181	82,593.5	1369.9
III	829,404	1,953,407	2.36	42.46	3,734,988	145,611.0	3146.0
Total	9,967,479	9,567,178			26,763,827	374,494.5	6,354.5

Total annual cost savings of all plants is about \$9,967,479

This represents a plant average of \$996,748/yr in savings

Total reduction in energy consumption per plant is about 17.5%

A Combined Heat and Power System or CNG

Consider the following diagram and run some energy calculations.

Nat Gas Savings = Fuel Energy - Heat For Boiler = 85,397 MMBtu/yr - 34,159 MMBtu/yr = 51,238 MMBtu/yr Cost Savings = Demand + Energy - Fuel - Maintenance Payback = Imp. Cost/Cost Savings = \$1,4000,000 / \$302,404/yr = 4.63 yrs (3.45 yr) Return on Investment = (\$302,404/yr / \$1,4000,000) x 100 = 21.60%/yr (28.92%/yr

DOE CHP Technical Assistance Partnerships (CHP TAPs)

FLORIDA

R

G

Electric Energy Stabilizer

Energy Savings Distribution

Integrate IoT Into SCADA System IC = \$10,000 CS = \$47,000/yrSPP = 0.21 vrs

Implement a Remote Access to SCADA-HMI

IC = \$0CS = \$5,000/yr SPP = Immediate

In Summary

- Free Energy Audits
- Free CHP TAP Evaluation
- MACR\$
- New Implementation Funding Resources

CONCLUSIONS

- There are opportunities for on-site power generation using CHP.
- NCRE such as photovoltaics (PV) can be made part of the plants' energy use portfolio.
- The correlation of electric energy usage with the amount of wastewater treated for plants with only electric energy capability is poor. The same is true for the linear correlation of natural gas energy usage with the amount of wastewater treated. Poor linear correlation is also observed between the electric energy usage and the amount of wastewater treated for those plants that use both modes of energy.
- Energy used per MG of WW treated is below recommended values by the US DOE.
- Equipment runs a fraction of the annual hours of operation, but not necessarily at the same time.
- Electric equipment has different operating parameters, efficiencies and capacities.
- Plants that do not further treat their sludge, have great opportunities to generate biogas and biofertilizers, and self-generate power through CHP. All with very appealing savings.

What is not a best practice becomes a recommendation

Questions?

Engineering UNIVERSITY OF FLORIDA

